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The dynamics and spectrum of internal gravity waves generated in a linearly stratified
fluid by tidal flow over a flat-topped ridge are investigated at five different latitudes
using an inviscid two-dimensional numerical model. The resulting wave field includes
progressive freely propagating waves which satisfy the dispersion relation, and forced
waves which are trapped non-propagating oscillations with frequencies outside the
internal wave band. The flow is largely stable with respect to shear instabilities,
and, throughout the runs, there is a negligibly small amount of overturning which is
confined to the highly nonlinear regions along the sloping topography and where tidal
beams reflect from the boundaries. The wave spectrum exhibits a self-similar structure
with prominent peaks at tidal harmonics and interharmonics, whose magnitudes decay
exponentially with frequency. Two strong subharmonics are generated by an instability
of tidal beams which is particularly strong for near-critical latitudes where the Coriolis
frequency is half the tidal frequency. When both subharmonics are within the free
internal wave range (as in cases 0◦–20◦ N), they form a resonant triad with the tidal
harmonic. When at least one of the two subharmonics is outside of the range (as
in cases 30◦–40◦ N) the observed instability is no longer a resonant triad interaction.
We argue that the two subharmonics are generated by parametric subharmonic
instability that can produce both progressive and forced waves. Other interharmonics
are produced through wave–wave interactions and are not an artefact of Doppler
shifting as assumed by previous authors. As the two subharmonics are, in general,
not proper fractions of the tidal frequency, the wave–wave interactions are capable
of transferring energy to a continuum of frequencies.

1. Introduction
A periodic disturbance in a stably, continuously stratified fluid generates a response

across a wide range of frequencies. This can consist of progressive waves which
propagate away from the generation site, or non-propagating forced waves, which
remain trapped at their generation site. In the case of finite-amplitude disturbances,
the generation process and the resulting fluid motion are usually too complex to be
described directly in terms of particle displacements or velocities. However, there is
evidence that the spectrum of the wave field has a much simpler structure which
allows insight into the nature of the flow. The deep ocean, for example, abounds
with internal waves, generated primarily by tides and winds (Munk & Wunsch 1998);
the variety and multitude of factors that affect the internal wave field make a direct
description of the waves impossible. Yet, the energy spectrum of the waves has a simple
algebraic representation, known as the Garrett–Munk spectrum (Garrett & Munk
1975), which is universal throughout the deep ocean away from the strong generation
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sites. With this in mind, in order to understand the essential physics of a flow
generated by a periodic disturbance, the fluid dynamics may be studied in association
with the energy transfers within the spectrum (see, for example, Winters & D’Asaro
1997; Hibiya, Niwa & Fujiwara 1998; Furue 2003; Furuchi, Hibiya & Niwa 2005;
Gerkema, Staquet & Bouruet-Aubertot 2006; Legg & Huijts 2006; MacKinnon &
Winters 2007).

Apart from being a potentially efficient approach to describing the complex
phenomenon, the internal wave spectrum provides insight into energy transfers within
the internal wave field, which has important applications in several areas including
climate change and nutrient cycles. The reason why energy transfers among internal
waves affect these such seemingly unrelated processes is due to the connection of
internal waves to deep-ocean mixing (Garrett 2003). Mixing in the deep ocean
conveys heat from the upper layer of the ocean to the abyssal cold waters, and, thus,
helps maintain the meridional overturning circulation. The role of internal waves is to
transfer energy from the primary sources of oceanic mechanical energy, i.e. from tides
and winds, to mixing (Dewar et al. 2006 suggests that the marine biosphere is another
important source of energy for mixing). This makes internal waves much more than
a background noise in the medium: internal waves are an important dynamical part
of global processes in the ocean, including climate change and nutrient cycles. The
significance of internal waves in connection to deep-ocean mixing was realized at
the earliest stage of internal wave research (Sverdrup, Johnson & Fleming 1942);
however, knowledge of the energy cascade in internal waves is far from complete.

Nevertheless, many facts about the energy cascade in internal waves are known.
The first one is rather obvious: if the oscillating source has frequency ω0 and
the excursion distance is small so that no lee waves are generated, most of the
internal waves generated directly by the source have frequency ω0. Consequently, a
considerable amount of energy may be put into progressive waves of frequency ω0.

Historically, the presence of a dominant frequency was the first property of internal
waves to be noticed. For example, in 1907, not long after the discovery of internal
waves in the ocean by Nansen (1902), Otto Pettersson discovered the tidal periodicity
of vertical internal movements in Danish sounds; this was important, as tides were
not known as a source of internal waves at that time.

Internal waves of the fundamental frequency were also the target of the earliest
experimental studies. For example, Görtler (1943), Mowbray & Rarity (1967), Thorpe
(1968) and many others, observed internal wave beams of the fundamental frequency
generated by a body oscillating in a linearly stratified fluid. In the special case of
linear stratification, when the buoyancy frequency Nb and Coriolis frequency f are
constant, the beam of frequency ω ∈ (f, Nb) has constant slope r given by

r2 =
ω2 − f 2

N2
b − ω2

, (1.1)

and internal waves are manifested in the famous St Andrew’s cross pattern. Oceanic
analogues, topographically generated beams of tidal frequency, can be found in
numerical studies (e.g. Holloway & Merrifield 1999), and in several field observations
(Pingree & New 1991; Carter, Gregg & Merrifield 2006; Rainville & Pinkel 2006).
However, the best confirmation of the fact that waves of the fundamental frequency
represent the first candidate to drain energy from the source comes from the spectra
of internal waves. In the deep ocean, for example, the spectra of internal waves
near rough topography and near the surface are often characterized by prominent
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peaks at the tidal and Coriolis frequencies (Olbers 1983), these being the fundamental
frequencies of the two sources.

Waves of the fundamental frequency ω0 generated by an oscillating source are
usually accompanied by weaker waves of higher harmonics nω0, where n ∈ {2, 3, . . .}.
Although the harmonics have been observed in experiments (e.g. Mowbray & Rarity
1967), their nature and energetics were obscure until the work by Bell (1975). He
considered a linearly stratified tidal flow over isolated topography in a non-rotating
fluid of infinite depth, and used the first-order approximation of the nonlinear operator
in the governing equations. Bell’s solution was later extended to the case of finite
depth by Khatiwala (2003). The solutions obtained by Bell and Khatiwala are given by
linear superpositions of tidal harmonics emanating from near the ridge; the energy in
harmonics nω0 decays rapidly with n. It was realized later that harmonics may also be
produced by higher-order nonlinear interactions at locations where waves of harmonic
frequencies cross. The generation of the higher harmonics through the collision or
reflection of internal wave beams can be found in the numerical experiments by Lamb
(2004) and Gerkema et al. (2006) and in laboratory experiments (Peacock & Tabaei
2005; Zhang, King & Swinney 2007). There are also field observations where internal
waves are generated by nonlinear superposition of tidal harmonics (Stashchuk &
Vlasenko 2005). The fact that the interaction of internal wave beams can generate
harmonics inspired a theoretical investigation of the nonlinear interactions (Tabaei,
Akylas & Lamb 2005). On the whole, there is plenty of evidence that the harmonics
represent a family of frequencies that can efficiently receive energy from the source
and transfer it to other waves.

As internal waves are intrinsically unstable (Drazin 1977; Koudella & Staquet
2006), the set of possible frequencies is not limited to harmonics only. In weakly
nonlinear theory, when a single internal wave of frequency ω0 and wave vector K 0

is subjected to a small perturbation, an instability of parametric subharmonic type
will inevitably set in, and the primary wave will decay into two small-scale waves
of about half the frequency. This process, known as the parametric subharmonic
instability (PSI), represents an important class of resonant triad interactions. A
resonant triad interaction implies three waves with wave vectors and frequencies
(K j , ωj ) for j = 0, 1, 2, each of which satisfies the dispersion relation kh/m = ± r

where kh is the horizontal wavenumber, m is the vertical wavenumber and r is the
slope of the group velocity vector given by (1.1), and for which K 0 + K 1 + K 2 = 0 and
ω0 + ω1 + ω2 = 0 (Phillips 1977). In particular, all three waves are freely propagating.
Hasselman (1967) showed that in a resonant triad, the wave with the highest absolute
frequency is unstable to the other two waves. Thus the initial wave 0 is unstable
provided |ω0| = |ω1|+ |ω2|. The maximum growth rate occurs for ω1 = ω2 = ω0/2 in the
limit of high wavenumbers |K 1| ∼ |K 2| � |K 0| (Staquet & Sommeria 2002). PSI was
first observed for standing internal waves in the laboratory experiments by Thorpe
(1968) and McEwan (1971). Early numerical studies on PSI within an oceanic context
were reviewed by Orlanski (1981).

PSI, along with other resonant triad interactions, occurring in a random internal
wave field, is too slow to be the dominant mechanism for energy transfers in the deep
ocean (Olbers & Pomphrey 1981). Two factors can increase the transfer rate, both of
which occur at the generation site: stronger nonlinearity and coherence among the
waves. As the flow changes from weakly nonlinear to strongly nonlinear (and internal
waves in the ocean are strongly nonlinear, according to Holloway 1980), PSI turns into
a strong rapid instability whose properties are somewhat different from the picture
provided by weakly nonlinear theory. The link between the weakly nonlinear and
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strongly nonlinear regimes remains poorly understood (Staquet & Sommeria 2002).
As the nonlinearity strengthens, the time scales associated with PSI decrease (de Silva,
Imberger & Ivey 1997; MacKinnon & Winters 2007). The regions where strong rapid
nonlinear instabilities may occur include regions of reflection of an internal wave
beam from the boundary (Javam, Imberger & Armfield 1999) and regions where
two strong beams intersect (McEwan 1973; Teoh, Ivey & Imberger 1997; Javam,
Imberger & Armfield 2000). The strong subharmonics observed in numerical
simulations of internal tides by MacKinnon & Winters (2003), Lamb (2004) and
Gerkema et al. (2006) are also generated by strong rapid nonlinear instabilities. Strong
coherence among the interacting waves further strengthens the nonlinear interaction
in these sites. It is likely that the strong subharmonics seen in field observations (e.g.
Carter & Gregg 2006) are also the result of strongly nonlinear instabilities.

In this paper we provide evidence that PSI generates subharmonics whose
frequencies are in general different from ω0/2 and depend on latitude. When the
subharmonics are within the free internal wave range, they form a resonant triad
with the tidal harmonic ω0. However, the subharmonics generated by PSI are
not restricted to progressive internal waves only: for supercritical latitudes, the
subharmonic frequencies fall out of the free internal wave range, and the waves
generated by the instability become forced. Thus, in the fully nonlinear case, PSI does
not necessarily have to be a resonant triad interaction. This is an important result
as transferring energy into forced locally trapped waves can have a great impact on
mixing (Teoh et al. 1997; Javam et al. 1999, 2000).

If there are several sources of internal waves with fundamental frequencies
ω1, ω2, . . . , strong waves can be generated at the combination frequencies, such
as |ω1 − ω2|, |2ω1 − ω2|, |2ω2 − ω1|, etc. The waves at combination frequencies
are generated by triad interactions, which do not have to be resonant. This was
studied experimentally (Teoh et al. 1997; Chashechkin & Nekludov 1990), theoretically
(Kistovich & Chashechkin 1991), and numerically (Javam et al. 2000). Strong waves
at combination frequencies have been observed in the ocean (van Haren, Maas &
van Aken 2002).

If strong internal waves of fundamental frequency ω0 are subjected to a
subharmonic instability generating energetic waves at two frequencies ω1, ω2 with
|ω1|, |ω2| ∈ (0, |ω0|), then the subharmonic instability is followed by the generation
of oscillations at all combination frequencies of ω0, ω1 and ω2, including freely
propagating and forced waves. If the generated subharmonics are not proper fractions
of ω0, energy fed into the fundamental frequency may spread throughout the
whole continuum of frequencies comprised of all combination frequencies. Typically,
nonlinearly interacting waves lose only a small fraction of their energy toward newly
generated waves. This leads to an energy cascade: strong waves give away a little of
their energy to their descendants, and the descendants, in their turn, produce more
waves, which are even less energetic. In this paper, we look into several particular
realizations of this sort of energy cascade.

We model internal wave dynamics of a tidal flow over an idealized topography
and investigate the spectral content of the flow. We show that apart from the
harmonics and subharmonics, waves of interharmonic frequencies greater than the
fundamental frequency are generated. Interharmonics are defined as frequencies lying
between the multiples of the fundamental frequency; subharmonics are a subclass of
interharmonics with frequencies less than the fundamental frequency. Subharmonics
are generated by the instability of the tidal beam near strongly nonlinear regions.
Through wave–wave interactions, energy transfers from subharmonics to higher
interharmonics, so that the interharmonic frequencies observed in the flow spectra
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happen to be the combination frequencies of the strongest subharmonics and
harmonics.

The paper is organized as follows. In § 2, we describe the framework that we used:
physical assumptions, governing equations with corresponding boundary conditions
and the geometry of the domain. Methods employed to investigate the problem are
described in § 3. In particular, we describe the numerical model solving the governing
equations, the data that we analysed and the spectral analysis techniques. The results
are presented in § 4. There, we explain the underlying dynamics of the observed energy
transfers and present spectral analysis of the flow.

2. Framework
2.1. Assumptions

In order to model internal wave dynamics, we have made several assumptions, which
fall into three categories: (i) assumptions concerning the domain under study; (ii)
assumptions on fluid properties; (iii) approximations concerning the Earth’s rotation.

The most restrictive assumption is the two-dimensionality of the flow. It does,
however, have the advantage that use of a two-dimensional model allows much
higher resolution than could be achieved with a three-dimensional one. Another
restriction on the domain is the rigid-lid approximation where we assume that the
movement of the surface is negligibly small. As the depth of the domain is 5 km and
oscillations of the surface associated with internal waves are typically of the order of
a few centimetres, the dynamics of the flow is not significantly modified by use of the
rigid-lid approximation.

For simplicity of interpretation of the results, we assume that the fluid is incompres-
sible, inviscid and linearly stratified. In addition, the traditional f -plane approximation
is used, i.e. the Coriolis frequency is assumed constant throughout the domain. The last
approximation that we use is the Boussinesq approximation, i.e. the density variations
are assumed negligible in every term of the governing equations except for the gravity
term. The Boussinesq approximation is very good for the ocean (see, for example,
Kundu & Cohen 2002), and it also facilitates the solving of the governing equations.
The assumption of a linearly stratified fluid under the Boussinesq approximation
means that internal wave beams remain coherent indefinitely as the phase speed of
a mode-n wave is inversely proportional to the mode number. For more realistic
stratifications, e.g. those with a strong thermocline as observed in the ocean, internal
wave beams rapidly disappear once they reach the thermocline as the phase speeds
of the various modes are no longer commensurate. Thus, in reality, the pattern of
coherent internal wave beams observed in our simulations throughout the domain
would not exist far away from the topography. For example, Martin, Rudnick &
Pinkel (2006) investigating the Hawaiian Ridge of height more than 3 km, did not
observe any beam patterns further than 100 km from the ridge.

2.2. Governing equations

Under the assumptions described in the previous section, the equations governing
internal wave dynamics are the two-dimensional incompressible Euler equations under
the Boussinesq approximation (Lamb 1994):

ut + u · ∇u + f k × u = −∇p − ρgk,

ρt + u · ∇ρ = 0,

∇ · u =0.

⎫⎬
⎭ (2.1)

Here, ∇ = (∂/∂x, 0, ∂/∂z) and the unit vector in the z-directionis k = (0, 0, 1).
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In (2.1), there are three unknowns depending on time t and spatial coordinates x

and z: the velocity vector u = (u, v, w); the normalized density perturbation ρ, such
that physical density ρph is given by ρph = ρ0(1+ρ), where ρ0 is taken to be the surface
density; and the normalized pressure p related to the physical pressure pph by the
formula pph = patm + ρ0(p − gz), where patm is the atmospheric pressure. Equations
(2.1) have two parameters: the Coriolis frequency f related to the latitude θ by the
formula f = 2Ω sin(θ), where Ω ≈ 0.73 × 10−4 s−1 is the angular velocity of the Earth,
and the acceleration due to gravity g = 9.81 m s−1.

Equations (2.1) are solved in a symmetric two-dimensional domain representing a
vertical cross-section of the ocean with a flat-topped ridge at the bottom:

R = {(x, z) ‖ −L/2 � x � L/2, −H + h(x) � z � 0},

where L is the horizontal length of the domain, H is the water depth away from the
ridge, and h(x) defines the topography of the ocean bottom. In this work, the shape
of the topography was given by

h(x) = A exp

[
−

(x

d

)4
]

, (2.2)

with A= 1800 m being the amplitude and d = 12500 m defining the width of the ridge.
The hill h(x) is supercritical, i.e. its maximum slope is steeper than the slope r0 of the
radiated internal tide. The criticality parameter corresponding to the topography is
defined as α = max (h′(x))/r0 and is within the range [1.54, 2.07] for the considered
cases. With respect to the second harmonic, the topography is subcritical in all
cases, i.e. max (h′(x))/r2 ∈ [0.75, 0.79], where r2 is the slope corresponding to the
second harmonic at one of the five latitudes. The parameters associated with the
domain description are summarized in table 1 along with other parameters. The
development of the fluid flow is considered on the time domain [0, Ttot], where
Ttot = 30 days.

The governing equations (2.1) are subject to boundary conditions at each side of
the domain and an initial condition. At the left-hand boundary the flow is forced
with a periodic tidal current U (t) = U0 cos(ω0t). The following typical values for the
amplitude U0 and the semidiurnal tidal frequency ω0 were used: U0 = 0.025 m s−1 and
ω0 = 1.4075 × 10−4 s−1. At the bottom of the domain, an impermeability condition is
imposed: u · n = 0, where n is a vector normal to the boundary. At the top of the
domain, we also use the impermeability condition w = 0. At the right-hand boundary,
an outflow boundary condition is applied, allowing long waves to propagate away
freely without reflection. The model is initialized with the peak rightward barotropic
flow: u(x, z, t = 0) = Q/[H − h(x)], and v(x, z, t = 0) = 0, where Q is the maximum
barotropic volume flux given by Q = U0H . Incompressibility then dictates the vertical
velocity component: w(x, z, t = 0) = −Qh′(x)z/(H − h(x))2. The fluid density at time
t = 0 is linearly stratified, so that the buoyancy frequency

Nb ≡
(

− g

ρ0

dρph

dz

)1/2

= 10−3 s−1 (2.3)

is constant.
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Category Parameter Value

Physical Coriolis frequency f (θ =0◦) = 0 s−1

f (θ =10◦) = 0.2535 × 10−4 s−1

f (θ =20◦) = 0.4993 × 10−4 s−1

f (θ =30◦) = 0.7300 × 10−4 s−1

f (θ =40◦) = 0.9385 × 10−4 s−1

Maximum tidal speed (deep water) U0 = 0.025 m s−1

Tidal frequency ω0 = 1.4075 × 10−4 s−1

Tidal excursion distance (deep water) Ltid = 355.2398 m

Acceleration due to gravity g = 9.81 m s−2

Buoyancy frequency Nb = 10−3 s−1

Domain Total length L = 6000 km
Water depth H = 5 km
Ridge amplitude A = 1.8 km
Ridge width parameter d = 12.5 km
Total time Ttot = 30 days

Discretization Central region length Lcent = 819.2 km
Number of horizontal points in the centre Icent = 8192
Number of horizontal points on sides Iside = 2000
Number of vertical points J = 192
Cell width (central domain) �x = 100 m
Cell height (deep water) �z = 26.042 m
Cell height (shallow water) �z = 16.667 m
Maximum time step dt = 30 s

Non-dimensional Criticality parameter α(θ =0◦) = 1.5424
α(θ =10◦) = 1.5681
α(θ =20◦) = 1.6497
α(θ =30◦) = 1.8040
α(θ =40◦) = 2.0696

Tidal excursion parameter Ltid/d = 0.0284
Ridge aspect ratio d/A = 6.9444
Ratio of elevation and depth A/H = 0.36

Table 1. Problem parameters.

3. Methods
3.1. Model

The numerical scheme used to solve (2.1) is a finite volume method based on the
second-order projection technique developed by Bell, Collela & Glaz (1989) and
extended to stratified flows by Bell & Marcus (1992) and to quadrilateral grids
by Bell, Solomon & Szymczak (1989). The numerical scheme uses a second-order
Godunov upwind scheme with a monotonized slope computation which provides
selective numerical dissipation and diffusion near sharp gradients. This damps energy
accumulation at small scales. The description of the model can be found in Lamb
(1994).

The model uses a terrain-following grid. The total domain R is discretized with
two staggered grids for the evaluation of scalar and vector unknowns: vector grid
points are located at the centres of finite volumes and scalar grid points are located
at the nodes of the finite volumes. Each grid can be split into three parts with respect
to the horizontal resolution: the central region of length Lcent =819.2 km with high
horizontal resolution of �x = 100 m and two side regions of length Lside ≈ 2887 km
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with lower horizontal resolution of �x = 1500 m. The grid spacing varies smoothly
from one region to another. The purpose of the side regions is to allow the fast
large-scale waves generated at the centre to propagate away from the source without
reflection. The length of the domain is chosen so that the waves have just enough time
to reach the boundaries, but not enough time to affect the middle part after reflection.

The vector grid discretizing the central part of the domain is given by the physical
coordinates {xij , zij }:

xij = −Lcent/2 +
(
i + 1

2

)
�x, �x =

Lcent

I
,

zij = −H + h(x) +ij (j + 1
2

)
�zij, �zij =

H − h(xij)

J
,

⎫⎪⎬
⎪⎭ (3.1)

where I = 8192 and J = 192 are the number of points in the vertical and horizontal
direction, respectively.

The time-stepping procedure allows a variable time step based on the Courant–
Friedrichs–Lewy (CFL) condition for the upwind method. However, the maximum
time step was set to a relatively small value dt = 30 s, so the time-step did not actually
change throughout the computation, except for some small intervals of time.

3.2. Data

Five numerical experiments that we discuss in this work are defined by the Coriolis
frequencies in table 1, corresponding to latitudes θ = 0◦, 10◦, 20◦, 30◦ and 40◦ North.
For each experiment the model was set up to store a set of data composed of
time series at 30 min intervals of the horizontal velocity u at each grid point in
the central domain. Values of u are denoted by {un

ij}, where i =0, 1, . . . , I − 1,
j = 0, 1, . . . , J − 1 are the indices of the corresponding grid coordinates {xij, zij}; the
superscript n= 0, 1, . . . , N −1 corresponds to the temporal equipartition tn = (n+1)�t

covering the time period of 30 days, where the sampling interval is �t = 30 min and
the number of samples N = 1440. Even if the time step dt used by the model is
not always 30 s, the model guarantees that the data are stored at the equidistributed
sampling times by changing the time step appropriately just before storing the data.

In order to choose an appropriate sampling time step �t and a reference frame, we
compared spectra of the baroclinic horizontal velocity in the Lagrangian, Eulerian and
barotropic-Lagrangian reference frame. Both the sampling time interval and reference
frame affect the spectrum of the velocity. The sampling rate defines the amount of
aliasing in the spectral estimation. The reference frame may lead to the appearance
of Doppler-shifted frequencies in the spectral estimation. Ideally, working in the
Lagrangian reference frame eliminates all Doppler-shifted frequencies. However, it
is expensive to calculate all data sets in the Lagrangian reference frame. We found
that the barotropic-Lagrangian reference frame with the sampling time interval of
30 min is an acceptable compromise for our purposes. In order to illustrate why the
barotropic-Lagragian reference frame suits us, let us consider a concrete example of
the spectral estimation performed for different reference frames and the case 0◦ N.

The first set of time series, representing the baroclinic velocity in the Eulerian
reference frame, is given by utEul(x, z, t) = u(x, z, t) − U (t)H/[H − h(x)] sampled in
time with the sampling interval �t = 5 min at sixteen uniformly distributed locations
for x ∈ [0, 40] km.

The second set of time series, representing the baroclinic velocity in the Lagrangian
reference frame, is given by uLag(ξ̃ , η̃, t) = u(ξ̃ , η̃, t)−U (t)H/[H −h(ξ̃ )] corresponding
to the fluid particles whose trajectories are given by (ξ̃ (t), η̃(t)) and whose initial
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Figure 1. One-dimensional spectra of the horizontal velocity at latitude (a) 0◦ and (b) 20◦ N:
Lagrangian reference frame (thick solid line), Eulerian reference frame (thin solid line),
barotropic-Lagrangian reference frame (dashed line). The vertical dashed line to the right
of ω/ω0 = 7 indicates the buoyancy frequency.

locations are the same sixteen points as for uEul(x, z, t); the time series are sampled
in time with the sampling interval �t = 5 min.

The third set of time series, representing the baroclinic velocity in the barotropic-
Lagrangian reference frame, is given by ubar(ξ, η, t) = ũ(ξ, η, t) − U (t)H/[H − h(ξ )]
such that at the initial moment, (ξ, η) coincide with the coordinates (x, z) at the same
sixteen location as for uEul(x, z, t); the time series are sampled in time with the larger
sampling interval �t = 30 min.

The time series start deviating after the time period of about one day; however,
the difference does not grow significantly in time. The spectra Υ Eul(ω), Υ Lag(ω) and
Υ bar(ω), corresponding to the time series uEul(x, z, t), uLag(ξ̃ , η̃, t), and ubar(ξ, η, t) at
different locations, were evaluated using the direct spectral estimator described in the
next section. For the estimator we used a window given by the prolate spheroidal
sequence of the third order. The Nyquist frequency for the sampling time interval
�t = 30 min is ωNyq ≈ 12.4ω0, six times smaller than the Nyquist frequency for the
sampling interval �t = 5 min. Figure 1(a) compares the spectra 〈Υ Eul(ω)〉, 〈Υ Lag(ω)〉
and 〈Υ bar(ω)〉 for the three reference frames, where 〈 · 〉 denotes averaging over
different locations.

All the spectra are fairly close and capture the peaks at the same frequencies,
consisting of harmonics and interharmonics. Thus, to define the spectral content of
the flow, we could use any of the three reference frames. The decay rate of the three
spectral estimations is approximately the same, indicating that the level of aliasing,
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which should be more pronounced for the spectrum Υ bar(ω) owing to lower temporal
resolution, is insignificant.

Although all of the spectra show similar energetic frequencies, the spectrum
〈Υ bar(ω)〉 is closer to the spectrum 〈Υ Lag(ω)〉 than is the spectrum 〈Υ Eul(ω)〉. For
the frequency range ω ∈ [5ω0, 10ω0], the spectrum 〈Υ Eul(ω)〉 is larger than the other
two. Thus, for the frequencies ω ∈ [0, 10ω0], the spectrum 〈Υ bar(ω)〉 represents a
better approximation of the spectrum 〈Υ Lag(ω)〉.

Figure 1(b) demonstrates an analogous comparison of the spectra 〈Υ Eul(ω)〉,
〈Υ Lag(ω)〉 and 〈Υ bar(ω)〉 for the case θ = 20◦ N. The spectra are similar and capture
the same frequencies. The main differences are observed outside the free internal
wave range. For the frequencies ω >Nb, the spectrum 〈Υ Eul(ω)〉 is again larger than
the other two. Also, the spectrum 〈Υ Lag(ω)〉 corresponding to the Lagrangian reference
frame has a weaker peak at the subinertial range.

In the rest of the work, we will analyse the spectrum of the horizontal velocity in
the barotropic-Lagrangian reference frame.

3.3. Spectral analysis

To analyse energy transfers within the modelled flow, we estimate two functions:
the average spectrum Υ (ω) characterizing the distribution of energy in the flow with
respect to different frequencies; and the spectrogram S(ω, t) representing the evolution
of the spectrum with respect to time.

3.3.1. Spectrum

Let r be a generic function representing the horizontal baroclinic velocity ũ in our
simulations. We let r be the set of N values of the function r at the time moments
tn = n�t:

r =

∣∣∣∣∣∣∣∣
r0

r1

...
rN−1

∣∣∣∣∣∣∣∣
with rn = r(tn), n = 0, 1, . . . , N − 1.

Let S(ω) with ω ∈ [0, ∞) be the continuous one-sided power spectrum of the process
r(t), such that S(ω)dω is the average contribution to the power from components
with frequencies from the interval [ω, ω + dω]. Total power of the process r(t) on the
time interval [0, Ttot] is, then,

Ptot ≡ 1

Ttot

∫ Ttot

0

r2(t) dt =

∫ +∞

0

S(ω) dω ≈ 1

Ttot

N−1∑
n= 0

r2
n�t. (3.2)

We estimate the spectrum S(ω) using a direct spectral estimator described in
Percival & Walden (1993):

Ŝ(ω) =
�t

π

∣∣∣∣∣
N−1∑
n= 0

gnrn exp(−iωtn)

∣∣∣∣∣
2

, ω ∈ [0, ωNyq) (3.3)
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Figure 2. The shape of the window given by a discrete prolate spheroidal sequence used for
the spectral analysis (dots) compared to the default rectangular window (circles) for N = 64.

where ωNyq = π/�t ≈ 1.75 × 10−3 s−1 is the Nyquist frequency and gn is a data window
satisfying the condition

N−1∑
n =0

g2
n =1. (3.4)

The spectral estimator Ŝ(ω) in (3.3) is defined on a continuous interval [0, ωNyq]. We
use (3.3) directly when we need to calculate the spectrum at a single given frequency.
The evaluation of the spectral estimation Ŝ(ω) at a large number of frequencies can
be done efficiently with the use of zero-padding and the fast Fourier transform (FFT)
described by Cooley & Tukey (1965). In this paper, we use 213 frequencies to discretize
the interval [0, ωNyq].

Figure 2 illustrates the shape of the window given by a discrete prolate spheroidal
sequence of the third order that we used in this work. The window corresponds to
the spectral resolution 12π/Ttot ≈ 1.4544 × 10−5 s−1, i.e. each energetic frequency in
the spectrum is represented by a peak with the bandwidth 12π/Ttot. We compared
several spectral estimations with different resolutions and found that with a resolution
of 12π/Ttot the spectral estimation has no appreciable leakage in the high-frequency
range of the spectrum, and, also, most of the observed energetic frequencies in the
spectral estimation are well-resolved.

The variance of the spectral estimator Ŝ(ω) can be reduced by averaging spectra
for different realizations of the process r . For example, let us consider the procedure
of calculating the average spectrum of the flow within 40 km of the hill. For
each coordinate (ξn

ij , η
n
ij) in the barotropic-Lagrangian reference frame, such that

|ξ 0
ij | < 40 km, we calculate the spectrum Ŝij(ω) of the corresponding time series ũn

ij.

Next, we average the spectra Ŝij(ω) over i and j and obtain the average spectrum
Υ (ω):

Υ (ω) = 〈Ŝij(ω)〉,

where the angle brackets indicate averaging over indices i and j .

3.3.2. Spectrogram

When the time-series r is part of a non-stationary signal, it is useful to estimate the
spectrum on consecutive intervals of time in order to see how the spectrum evolves
in time. In order to calculate the spectrogram, we split the sequence r into N − M +1
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subsequences of length M:

r0 = { r0, r1, . . . , rM−1 },
r1 = { r1, r2, . . . , rM },
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

rN−M = { rN−M, rN−M+1, . . . , rN−1 },

⎫⎪⎬
⎪⎭ (3.5)

where each sub-sequence rk corresponds to a time interval [tk, tk+M−1]. For each

sub-sequence rk we calculate the spectral estimation Ŝk(ω) using the estimator (3.3)
with the same window. We define the spectrogram Ŝ(ω, t) at the discrete times
corresponding to the centres of the time intervals [tk, tk+M−1] as follows:

Ŝ

(
ω,

tk + tk+M−1

2

)
= Ŝk(ω). (3.6)

The choice of the sub-sequence length is arbitrary; however, it should be short enough
to capture the evolution appropriately while long enough to ensure that the significant
features of the spectrum are resolved. Taking into account this trade-off, we found
that the length of sub-sequence M = N/3 = 480 is a reasonable value, it gives the
evolution of the spectrum over the time period of 20 days with a spectral resolution
of 12π/T , where T = 10 days.

Several alternative techniques could have been used to analyse the evolution of
spectra. One of the most important approaches is wavelet analysis. To investigate
how the energetics of different spectral components vary with time, we used, in
addition to the spectrogram, the continuous wavelet transform with Gauss shape
functions of different orders and obtained results nearly identical to those given by
the spectrogram. For the sake of simplicity, we will demonstrate the results obtained
using spectrograms in this paper.

4. Results
For the purpose of systematic analysis, our results may be considered under the

following headings: (i) underlying dynamics; (ii) spectrum of the flow; (iii) spatial
distribution of harmonics and interharmonics; (iv) spectrum evolution; (v) vertical
scales of harmonics and interharmonics; (vi) instability description; (vii) the cause of
subharmonics.

4.1. Underlying dynamics

The solution to (2.1) consists of progressive and forced (trapped) internal waves,
whose dominant frequencies, according to the spectrum of the flow, form a discrete
set of tidal harmonics and interharmonics. Both progressive and forced waves can be
seen in figure 3, which shows snapshots of the horizontal velocity field within 40 km
of the ridge at time t =30 days for the five latitudes. Vertical profiles of the horizontal
velocity at x = 13 km are shown to the right-hand side of each contour plot. These
illustrate the strength of the flow in the tidal beams. The progressive and trapped
waves are generated where the flow is highly nonlinear: the region near the ridge and
regions where strong progressive internal waves collide or reflect from the boundary.
Only the strongest waves are seen in the velocity snapshots.

Some internal waves in the internal wave field overturn and break. The overall
wave field, however, is mostly immune to the shear instabilities and no overturning
happens away from strongly nonlinear regions. For all times, the Richardson number
Ri = N 2

b /(∂u/∂z)2 is less than 0.25 only within small regions where strong nonlinear
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Figure 3. Contours of the horizontal velocity field at different latitudes at t = 30 days
(a) θ =0◦N, (b) 10◦N, (c) 20◦N, (d) 30◦N, (e) 40◦N. The right-hand panels show horizontal
velocity profiles at x = 13 km.

dynamics take place. Typically, this corresponds to the breaking of waves shoaling
onto the top of the ridge, similar to the breaking of surface waves shoaling onto the
shore. However, for the case 30◦ N, some overturning happens to the trapped waves
in the vicinity of strongly nonlinear regions where the tidal beams hit the bottom or
surface.
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Progressive waves have frequencies within the range (f, Nb). Since Nb is constant,
waves of a single frequency ω can form a straight beam, whose slope r is determined
by the three frequencies ω, Nb and f and is given by (1.1). As the topography is
supercritical, strong waves of tidal frequency generated at the edges of the ridge, where
the slope is critical, propagate both upward and downward, so that pronounced tidal
beams are seen above the top and along the side of the ridge. The second harmonic
2ω0 and other higher harmonics have slopes steeper than any part of the ridge, so
their corresponding beams emanating from the generation sites at the edges of the
ridge, are directed upward only. For most cases, progressive waves dominate the flow,
which is manifested in the pronounced beam structure (figure 3a–c, e).

Trapped waves have frequencies outside (f, Nb) and some of them are seen as
horizontally elongated patches near the generation sites. For example, when θ = 30◦ N,
we observe strong waves of subtidal frequency ω ≈ 0.5ω0 <f that do not propagate
away, but are trapped near the ridge and near the regions where the tidal beams hit
the surface (see figure 3d ).

The spectra of the internal waves (figures 5 and 6) that will be explained in the
next section, have a discrete set of dominant frequencies, either tidal harmonics or
interharmonics; here, we consider how tidal harmonics and interharmonics appear
in the velocity field. The major part of the energy in the flow is concentrated in
tidal harmonics, i.e. waves corresponding to the multiples of the tidal frequency:
ω = nω0 where n ∈ �, except at 20◦ and 30◦ N where the strong subharmonic spectral
peak is greater in magnitude than the peak at frequency 2ω0. Some of the beams
corresponding to the strongest harmonics are seen in figure 3, e.g. the first and second
harmonics are seen to be the dominant features of the velocity field for the cases θ = 0◦

and 10◦ N. Tidal harmonics with n<Nb/ω0 are progressive waves that contribute to
the far field away from the generation site, and tidal harmonics with n � Nb/ω0 are
trapped near the generation site. At the early stage of the flow development, tidal
harmonics are generated through tide–topography interaction near the edges of the
ridge. At this stage, the solution is similar to the analytical one obtained by Bell
(1975). Bell considered a similar problem in a non-rotating fluid of infinite depth,
and approximated the operator u · ∇ in the governing equations with U (t)∂/∂x, i.e.
only advection by the horizontal component of the barotropic tide plays a role.
Bell’s solution was later extended to the case of finite depth by Khatiwala (2003).
The solutions obtained by Bell and Khatiwala are given by linear superpositions of
tidal harmonics emanating from near the ridge; as in our simulations, the energy in
harmonics nω0 decays rapidly with n.

The progressive tidal beam harmonics produced by tide–topography interaction
propagate away from the ridge and eventually either intersect with other waves or
reflect from a boundary. In any of these events, the incident wave interacts nonlinearly
with the encountered or the reflected wave, and, as a result, may produce waves at
the combination frequencies, which are also from the set of tidal harmonics nω0 with
n ∈ �. For example, if a wave of frequency 2ω0 interacts with itself after reflection,
it produces a wave of frequency 4ω0, then the generated wave interacts with the
initial wave producing a wave of frequency 6ω0, and so on. The interaction and the
energetics of colliding and reflecting internal wave beams in a non-rotating fluid was
described analytically by Tabaei et al. (2005). They assumed that the flow away from
the generation sites was weakly nonlinear and sought the solution as a composition
of tidal harmonics. If the flow was indeed weakly nonlinear, the internal wave field
within a finite distance of the ridge would eventually resolve into a quasi-steady
beam structure. However, the flow consisting of tidal harmonics is far from reaching
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Figure 4. The tidal beam undergoing instability for the case θ = 20◦ N, given by the contours
|u| = {0.05, 0.06, . . . , 0.13} m s−1 at (a) t = 2.5T0, (b) 7.5T0, (c) 12.5T0. T0 = 12.4 h is the tidal
period.

an equilibrium: the strong beams of tidal frequency are perturbed periodically by
the topography and other beams, and soon become unstable (see figure 4 for an
illustration). Instabilities of, possibly, the same nature have been observed in the
ocean (Martin & Rudnick 2007). In our simulations, as a result of instabilities, waves
of interharmonic frequencies are generated.

Among all interharmonics generated in the flow and seen in the spectra (figures 5
and 6), the most evident are subharmonics, i.e. interharmonics of subtidal frequency
ω <ω0 (e.g. figure 3a–c). Beams of subharmonic frequencies are less steep than any
of the beams with frequency nω0, so subharmonics are easily detected in a velocity
field. For example, in case of θ = 20◦ N, four strong beams of subtidal frequencies
(determined by the slope) emanate from the two destabilized beams of tidal frequency
above the top of the ridge (figure 3c). Similar beams of subharmonic frequencies,
although less pronounced, can be seen for the cases θ = 0◦ and 10◦ N (figure 3a, b).
Closer inspection of the velocity fields reveals that the tidal beams become unstable
and generate subharmonics not only above the ridge, but also on its sides and where
the tidal beams are reflected from the top and the bottom of the domain.

Apart from subharmonics, the flow has other interharmonics whose frequencies are
larger than the tidal frequency. Their presence can be explained from the following
simple reasoning: any subharmonic ωα interacting with harmonics nω0, can produce
waves of frequency nω0 + ωα , n ∈ �. If the energy of a subharmonic is comparable
to that of the dominant harmonic ω0, then the energetics of higher interharmonics
should be comparable to those of higher harmonics nω0 with n � 2. In general,
the generation of a wave at frequency ωα ∈ [0, ω0) should be accompanied by the
generation of waves at frequencies ωα + nω0 with n ∈ �. The higher interharmonics
are harder to detect directly in a velocity field, not only because they are weaker,
but, also, because their slopes can be easily mistaken for those of tidal harmonics.
Their presence becomes obvious after considering the average spectra of the flow and
spatial distributions of waves with interharmonic frequencies.

4.2. Spectrum of the flow

In order to quantify the distribution of energy among different harmonics and
interharmonics we estimated the average spectra of the flow in different regions for
the different latitudes. The spectra reveal the most important spectral components of
the flow and quantify their energetics.

Figure 5 shows the average spectra of the flow within 40 km of the ridge for the
five cases. The spectra are calculated from the horizontal velocity time series in the
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Figure 5. One-dimensional spectrum of the flow within 40 km of the ridge for the five cases
(a) 0◦N, (b) 10◦N, (c) 20◦N, (d) 30◦N, (e) 40◦N.

barotropic-Lagrangian reference frame. The spectra have a self-similar structure with
prominent peaks at a discrete set of tidal harmonics and interharmonics.

The spectra are self-similar in the following sense: the shape of each spectrum in
the low-frequency range (0, ω0] nearly copies itself in the further frequency ranges
(nω0, (n + 1)ω0] for n ∈ �. As there are only a few dominant frequencies in the
interval (0, ω0], the spectrum is comprised of peaks at the tidal harmonics {nω0} and
the interharmonics {ωα +nω0}, where n ∈ � and ωα can be any of the subharmonics.
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Figure 6. One-dimensional spectra of the flow for the cases (a) θ = 20◦, (b) 30◦ N:
−5 � x � 5 km (dashed line), 30 � x � 40 km (solid line).

For the spectra shown in figure 5, both harmonics {nω0} and interharmonics {ωα+nω0}
decay with n at a similar exponential rate.

One of the consequences of the observed self-similarity and exponential rate of
decay is that if a subharmonic ωα has less energy than the tidal frequency ω0, then the
higher interharmonics {ωα + nω0} are also weaker than the corresponding harmonics
{(n + 1)ω0}, where n ∈ �. If, on the other hand, the subharmonics are stronger than
the tidal frequency, as in the case of tidal-to-subtidal conversion of motion happening,
for example, in the vicinity of the ridge for the case θ =30◦ N (discussed in more
detail later), then the higher interharmonics can also dominate higher harmonics.

The spectral peaks at frequencies within the range (f, Nb) correspond to progressive
waves; the peaks outside the range (f, Nb), to trapped waves. As the trapped waves
have amplitudes comparable to those of progressive waves, the shapes of the average
spectra do not allow us to distinguish trapped waves from progressive. To see which
waves are trapped near the ridge (the strongest generation site) and do not propagate
away, we compare the average spectra of the region −5 � x � 5 km on top of the ridge
and the average spectra of the region 30 � x � 40 km away from the ridge. Figure
6 demonstrates the comparison for the two latitudes θ =20◦ and 30◦. For the case
θ =20◦ N, it is seen that the peaks at frequencies less than the Coriolis frequency
are virtually absent in the spectrum for the region away from the ridge, as these
subinertial waves are trapped and do not reach the far-field region. For the higher
frequencies ω >Nb, the spectrum of the flow away from the ridge has a significantly
higher drop-off rate than that of the spectrum near the ridge, which is seen for both
latitudes.

The important result that can be extracted from the spectra is the existence of strong
interharmonics for latitudes θ � 30◦ N. For the case θ = 40◦ N, the interharmonics
are very weak, but are present. From our estimates, it follows that subharmonics,
which have been observed before in spectra of internal waves (Gerkema et al.
2006; MacKinnon & Winters 2007), happen to be just the strongest among other
interharmonics. Consistent with the aforementioned studies, the interharmonics are
particularly intense at near-critical latitudes, where the critical latitude (θcr = 28.82◦ N)
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is the latitude at which the Coriolis frequency is half the tidal frequencies. For example,
at the latitude 20◦ N, we see that the frequencies ω ≈ 0.4269ω0 and ω ≈ 0.5752ω0 are
the second and third strongest frequencies in the spectrum after the tidal frequency
ω0. However, efficient energy transfers from the tidal frequency into the subtidal range
are possible for latitudes θ > θcr, when the subharmonic receiving energy is outside the
range of freely propagating waves. In case θ = 30◦ >θcr, we observe large transfers of
energy into the subtidal range, and, as can be inferred from the velocity snapshots and
from the average spectrum, the frequency of at least one of the recipient subharmonic
waves is a trapped subinertial wave. Thus, in this case, the generated subharmonics
are not a result of a resonant triad interaction.

4.3. Spatial distribution of harmonics and interharmonics

Generated at various regions, propagating at numerous angles and exchanging energy,
harmonics and interharmonics have a complex spatial distribution. The power spectra
calculated for each spatial point indicate where a wave of a certain frequency is more
or less energetic; thus, we can construct their spatial distribution. After examining
spatial distributions of tidal harmonics and interharmonics at different latitudes, we
found the following.

(a) The wave of a harmonic or an interharmonic frequency within the range (f, Nb)
forms a beam whose slope is consistent with the linear dispersion relation (1.1).

(b) The wave of a harmonic or an interharmonic frequency outside the range
(f, Nb) forms a patch near the source.

(c) The generation sites of a tidal harmonic include: the region near the edge of
the ridge; a region where two harmonics collide; a region where a harmonic reflects
from the boundary.

(d) The generation sites of an interharmonic include: the regions where the beam of
tidal frequency becomes unstable, i.e. above the ridge, on the side of the ridge, or where
the tidal beam is reflected from the boundary; the regions where an interharmonic
collides with another wave.

Figures 7, 8 and 9 illustrate those points for a subset of tidal harmonics and
interharmonics at latitudes θ = 0◦, 20◦ and 30◦ N. For a particular frequency ωα , we
calculate the matrix Ŝij(ωα) for the time-series {ũn

ij}. After sorting the matrix Ŝij(ωα),
we choose approximately 32 % of Ŝij(ωα) with the largest values and visualize those at
the corresponding coordinates (xij, zij). The 5% of the matrix Ŝij(ωα) with the largest
values are emphasized with a cross-hatched pattern.

For the case θ = 0◦, figure 7 demonstrates the distribution of the subharmonic
ω = 0.4ω0, the tidal harmonic ω0, the interharmonic 1.4ω0 and the second harmonic
2ω0. The subharmonic ω = 0.4ω0 corresponds to the strongest subharmonic peak in
figure 5(a). The tidal harmonic has most of its energy in tidal beams generated
near the edges of the ridge. The second harmonic is manifested in several beams,
some of which are generated near the edges of the ridge, some, where a tidal beam
hits the boundary, and some, where tidal beams intersect. The subharmonic 0.4ω0 is
comprised of two beams, one of which originates from the unstable tidal beam above
the ridge, and another, from the unstable tidal beam on the side of the ridge. The
beams corresponding to the subharmonics are wider than those of harmonics. This
is because the instability initially develops at the base of the beam close to the topo-
graphy and subsequently spreads further and further along the beam, i.e. the beam
becomes unstable further up. Accordingly, the subharmonics generated by instabilities
do not propagate from a localized source, but propagate from a considerable length of
the tidal beam (see also figure 4). For the same reason, the beams of the interharmonic
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Figure 7. Spatial distribution of waves with different frequencies within 40 km of the ridge
for the case θ =0◦ N: (a) ω = 0.4ω0, (b) ω = ω0, (c) ω = 1.4ω0, (d) ω = 2ω0.

1.4ω0 are also wide. The beams corresponding to the interharmonic 1.4ω0 are also
seen to be generated in the regions of instability of the tidal beam (figure 7c).

For the case θ = 20◦ N, figure 8 demonstrates the two strong subharmonics 0.4269ω0

and 0.5752ω0 that appear in the velocity field (figure 3c) and in the spectra (figure 5c).
Also shown are the corresponding interharmonics 1.4269ω0 and 1.5752ω0. The
subharmonics are generated at three common generation sites, where the strong
tidal beam, tangent to the topography, becomes unstable: above the ridge, on the
side of the ridge and where the tidal beam reflects from the bottom. The beam of
subharmonic frequency formed where the tidal beam reflects from the bottom is more
clearly seen in the velocity field snapshot (figure 3c). All the interharmonics shown
form beams. In particular, it is seen that the familiar ‘fan’ of beams emanating from
the edge of the ridge consists not only of harmonics, as in Bell’s solution, but, also, of
interharmonics in between. The weaker interharmonics, e.g. 0.1544ω0 and 0.8504ω0,
are not shown here because they are more susceptible to error and have a noisy
spatial distribution, which is hard to interpret. It is certain, however, that they exist
at the regions of instability.

For the case θ =30◦ N, figure 9 demonstrates the distribution of energy corres-
ponding to the frequency 0.5ω0, ω0, 1.5ω0 and 2ω0. The peak at the frequency
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Figure 8. Spatial distribution of waves with different frequencies within 40 km of the ridge
for the case θ = 20◦ N: (a) ω = 0.4269ω0, (b) ω =0.5752ω0, (c) ω = 1.4269ω0, (d) ω =1.5752ω0.

0.5ω0 seen in figure 5 most probably corresponds to two subharmonics close to
the Coriolis frequency f . The spectral resolution renders the two subharmonics
almost indistinguishable. One of the subharmonics is progressive and the other is
trapped. This can be deduced, in part, from figure 6, θ = 30◦ N. The subharmonic
peak corresponding to −5 � x � 5 km has its maximum at a frequency slightly less
than the Coriolis frequency, while the weaker subharmonic peak corresponding to
30 � x � 40 N has its maximum at a frequency slightly larger than the Coriolis
frequency. Accordingly, figure 9(a) shows that the distribution of energy at frequency
0.5ω0 has some non-zero slopes that can be attributed to the progressive wave;
however, mostly, energy is concentrated near the ridge, which is the manifestation of
the trapped wave. The energetic patches corresponding to the trapped subharmonic
are gathered around the regions of instability of the tidal beam: above and on the side
of the ridge, and where the tidal beam is reflected from the boundary. The energetic
interharmonic close to 1.5ω0, generated at the same generation sites as the trapped
subharmonic, forms a beam whose slope is given by the linear dispersion relation.
The harmonics behave similarly to the case θ = 0◦ N.

The beam structure of the flow emerges here even more clearly than in the velocity
snapshots. It is seen that the waves with subharmonic frequencies also form internal
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log(Ŝ (ω)) (m2 s–1)
z 

(k
m

)
(a)

0 10 20 30 40
–5

–4

–3

–2

–1

0
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Figure 9. Spatial distribution of waves with different frequencies within 40 km of the ridge
for the case θ = 30◦ N: (a) ω = 0.5ω0, (b) ω = 1.0ω0, (c) ω = 1.5ω0, (d) ω = 2.0ω0.

wave beams if the frequency is within the range (f, Nb), (see, for example, figure 7a).
The slopes of the interharmonic beams agree with the linear dispersion relation (1.1).
If the interharmonic is outside the range of freely propagating waves, the wave is
trapped, as in the case of the trapped subharmonic at θ = 30◦ N.

4.4. Spectrum evolution

Further insight into the nature of harmonics and interharmonics can be gained by
quantifying the evolution of their energetics. To do this, we calculate the spectrograms,
described in § 3, that provide the evolution of the short-term spectra. The spectrograms
lack intricate details of the spectrum variation, but they show the overall trends. In this
section, we consider spectrograms calculated for the time periods [t0 − 5, t0 + 5] days,
where t0 ∈ [5, 25] days.

As a frequency is gaining or losing energy, the corresponding peak of the spectrum
is either growing or decaying. Figure 10 illustrates the spectra for the cases 0◦ and
30◦ N calculated at an early time interval [0, 10] days and at a later time interval
[10, 20] days. It is seen that, with time, the interharmonics gain energy, whereas the
harmonics either stay unchanged or lose energy. In a similar fashion, we can analyse
the energetics of each harmonic and interharmonic.

The time variation of a given harmonic or interharmonic changes smoothly with
latitude. For example, figure 11 compares the evolution of the energy in the first
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Figure 11. Energy of the tidal harmonic at different latitudes.

tidal harmonic at the different latitudes. The critical latitude is the case where the
most efficient harmonic-to-interharmonic energy transfers take place: according to
the spectrogram for the case 30◦ N, the energy at the tidal frequency decreases by
about 20 % from its value at 5 days before reaching a steady state.

Let us consider several first harmonics and interharmonics for the two latitudes, 0◦ N
and 30◦ N (figures 12 and 13). At θ = 0◦, the energy in the first and second harmonics
grow by a small amount for about 5 days (note that the spectrogram begins at
t = 5 days so initial growth is lost), and then they behave in a manner similar to what
could be the beginning of relaxation to a steady state. The supposition that the energy
in harmonics approaches a steady state is supported by the more obvious stabilization
observed in the case θ = 30◦ N and the fact that spectrograms vary smoothly from
latitude to latitude. The interharmonics seem to have a similar pattern of relaxation,
but on longer time scales.

For the latitude θ =30◦ N, the energy at the tidal harmonic decreases significantly
(by ≈ 20 %) to a steady state within approximately 10 days. During the same 10 days,
the interharmonics efficiently gain energy. It is not seen that the interharmonics have
stabilized by the end of the run to a particular level.

Similar evolution of energy in the tidal and subtidal frequency was calculated by
MacKinnon & Winters (2003).
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4.5. Vertical scales of harmonics and interharmonics

In our runs, interharmonics have vertical scales typically smaller than those of
harmonics and, thus, interharmonics should potentially be more susceptible to mixing.
To compare the vertical scales of harmonics and interharmonics, we consider the
velocity field in the region 20 � x � 40 km, where the depth is constant. To capture
the vertical scales that dominate the velocity field, we perform the discrete cosine
transform of the array ũn

ij with respect to the index j , corresponding to the vertical
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coordinate:

DCT{ũ}(xi, ml, tn) = β(l)

J−1∑
j =0

ũn
ij cos[(zj + H )ml], l = 0, 1, . . . , J − 1, (4.1)

where ml = πl/H and

β(l) =

{√
1/J , l = 0;

√
2/J , l = 1, 2, . . . , J − 1.

(4.2)

Next, to capture temporal scales, we estimate the power spectral density of each
time series DCT{ũ}(xi, ml, tn) with a fixed vertical wavenumber ml and horizontal
coordinate xi , using the same spectral estimator as in (3.3):

E(xi, ml, ω) =
�t

π

∣∣∣∣∣
N−1∑
n =0

gn[DCT{ũ}(xi, ml, tn)] exp(−iωtn)

∣∣∣∣∣
2

. (4.3)

Finally, averaging over xi spanning the interval [20, 40] km, we obtain a two-
dimensional spectrum Ē(ω, ml), characterizing average energy distribution with
respect to the frequency ω and vertical wavenumber ml . Average power of the
baroclinic horizontal velocity is related to the spectrum Ē(ω, ml) as follows:〈

1

Ttot

∫ Ttot

0

|ũ(ξ, η, t)|2 dt

〉
(ξ,η)

≈ 1

J

J−1∑
l =0

∫ ωNyq

0

Ē(ω, ml) dω, (4.4)

where the averaging on the left-hand side is performed over (ξ, η) such that ξ (0) ∈
[20, 40] km.

Figure 14 shows the spectrum Ē(ω, ml) for different latitudes. The vertical scales
of harmonics are dominated by low vertical modes: as the mode number increases,
the energy rapidly decays. The vertical scales of interharmonics are dominated by
vertical wavenumbers consistently higher than those of the corresponding harmonics.
This feature was observed for subharmonics in similar spectra by MacKinnon &
Winters (2003, 2007). Among all interharmonics, subharmonics have the highest
vertical wavenumbers. In the case θ = 30◦ N, subharmonics have the highest vertical
wavenumbers in comparison with other latitudes.

For the cases 10◦, 20◦ and 40◦ , the subinertial regions ω < f in the spectra Ē(ω, ml)
are much less energetic in comparison with other regions. However, for the case
θ = 30◦ there is clearly a subinertial peak at ω0/2. Note, that the energetic patches
associated with the interharmonics in figure 14 do not necessarily imply a continuous
distribution with respect to the vertical wavenumber: the broad range of vertical
scales with small energy values is due to leakage and the energetic patches, in fact,
may be comprised of only a few waves with constant vertical wavenumbers.

4.6. Instability description

To illustrate how instability generates a wave with a subharmonic frequency, we
consider an example of a local flow conversion from tidal frequency to a subharmonic
one.

We choose the case of θ =30◦ N as the instability processes are particularly
distinctive there and the energy transfers from the tidal frequency to the subharmonics
are strong. From the spatial distribution of waves with different frequencies in
figure 9, we see that the flow has strong waves of the subharmonic frequency
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Figure 14. Two-dimensional spectra Ē(ω,ml) (m2 s−1) on the logarithmic scale calculated
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near the top of the ridge and along the side. Let us consider the particular
location (x, z) = (15.7, −4.321) km. There, according to the local velocity spectrum,
the subharmonic frequency is particularly strong. Figure 15(a) shows the velocity time
series in the barotropic-Lagrangian reference frame corresponding to this location.
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Figure 15. Development of instability at θ = 30◦ N near the location x = 15.7 km and
z = −4.321 km: (a) the time-series of the horizontal velocity in the barotropic-Lagrangian
reference frame, (b) averaged spectrum over 30 days, (c) spectrogram of the tidal frequency
(solid line) and frequency 0.5ω0 (dashed line).

The tidal frequency dominates the time series at the beginning, but after about 15
days the subtidal frequency dominates. From the spectrum in figure 15(b) obtained by
averaging spectra at the location and the surrounding eight grid points, we infer that
the subharmonic frequency that gains energy is approximately 0.5ω0. The subharmonic
frequency in this case is, in fact, slightly stronger than the tidal frequency. Figure 15(c)
quantifies the transfer of energy from the tidal frequency to the subtidal one, and
shows how the spectrogram captures the conversion from tidal to subtidal motion
and, then, back to tidal and, possibly, to the motion at other frequencies, near the
end of the time series.

The instabilities occurring in a certain region form patches that spread spatially
in a manner similar to that described by Teoh et al. (1997). Forced waves in the
vicinity of instabilities are strong enough to affect surrounding regions, thus, the
instability patches grow. Figure 16 demonstrates the development of the instability
as in figure 15, but shows the contour plot of the velocity ũn

ij in the lower 800 m
of the water column as a function of z and t . It is seen that after about 1 day,
a strong core with large horizontal velocities starts forming in the centre of the
vertical cross-section. The core, alternating with frequency ω0 becomes larger and
after approximately 10 days, the core splits into two pieces, then into three, and so on.
As the energy is injected into the region through the instability, the patch dominated
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by waves of subharmonic frequency is constantly expanding. Similar expansion of
the instability patch is observed in other regions: for example, at a vertical cross-
section near the point (x, z) = (15.7, −4.321) km. This expansion is another factor that
makes forced instabilities important: although the waves are not propagating from
the vicinity of the instability, the region of instability is constantly growing and, thus,
an overturning, which may eventually occur in the region, may affect regions as far
as several kilometres from the centre of the instability.

4.7. The cause of subharmonics

The two strong subharmonics are generated by a parametric subharmonic instability,
which in the fully nonlinear regime can be either a resonant or a non-resonant triad.
When the strong subharmonics observed in the spectra are within the frequency range
(f, Nb), their wavenumbers suggest resonant triad interactions. There are a discrete
number of resonant triad interactions occurring in the highly nonlinear regions that
generate the two strongest subharmonics. For example, in the case θ = 20◦ N, there
is one resonant triad corresponding to the destabilization of the tidal beam on top
of the ridge and there is another corresponding to the instability on the side of
the ridge. The instability of the internal tidal beam occurring on top of the ridge
generates two subharmonic waves with frequencies ω1 and ω2 such that ω1 + ω2 = ω0.
The two subharmonics are characterized by two distinct wavevectors: K 1 = (k1, m1)
and K 2 = (k2, m2). The tidal beam, on the other hand, does not have any dominant
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wavenumbers. The linear dispersion relation indicates that the sum combination of
the wavevectors corresponding to the subharmonics on top of the ridge, i.e. K 1 + K 2,
corresponds to the tidal frequency. Similarly, the two subharmonics generated on the
side of the ridge are in resonance with the tidal beam.

Let us consider the example case θ = 20◦ in more detail and estimate the dominant
wavenumbers corresponding to the energetic subharmonic frequencies ω1 = 0.43ω0

and ω2 = 0.57ω0. The values of the subharmonic frequencies are obtained from the
one-dimensional spectrum Υ (ω). Apart from the wavenumbers corresponding to the
subharmonics, we will also need to estimate the energetic wavenumbers characterizing
the tidal beam.

The spatial distribution of the waves with a given frequency ωα can be analysed
using the following Fourier transform of the baroclinic velocities ũn

ij:

χij(ωα) =

N−1∑
n= 0

gnũ
n
ij exp(−iωαtn), (4.5)

where gn is the same as for the spectral estimator Sij(ωα). We consider the
distribution χij(ωα) over the domain ξij ∈ [0, 40] km and restrict our attention
to the three frequencies ω1, ω2 and ω0. Note, that the transform χij(ωα) is the
essential part of the direct spectral estimator Sij(ωα); the two are related as follows:
Sij(ωα) = (�t/π)|χij(ωα)|2. As opposed to the spatial distribution Sij(ωα), the transform
χij(ωα) allows us to obtain the information about the relative phase of a wave at each
coordinate (ξij, ηij). Using that information we can estimate the wavenumbers of a
wave.

The phase field corresponding to frequency ωα can be defined as follows:

φij(ωα) = Im{log(χij(ωα))}, φij(ωα) ∈ [−π, π], (4.6)

where Im stands for the imaginary part. As the phase field φij is discontinous and the
phase itself is ambiguously defined, a better way to analyse the local phase of a wave
is to consider either the real or imaginary part of the matrix χij(ωα) normalized by
the absolute value of χij(ωα) at each point, e.g.

ϕij(ωα) = Re{χij(ωα)}/|χij(ωα)|, ϕ ∈ [−1, 1], (4.7)

where Re stands for the real part. Figure 17 demonstrates the phase fields ϕij(ωα) for
ωα = ω1, ω2 and ω0. Lines of constant phase have the typical slope corresponding to
the frequency of the wave. The actual distribution of each wave is much less regular
than the phase field. To emphasize where the wave is most energetic, a contour of the
field |χij(ωα)| is shown as a shaded patch on top of each of the phase fields.

The structure of the phase fields ϕij(ω1) and ϕij(ω2) shows that there are dominant
wavenumbers for each subharmonic. However, as is seen in the field ϕij(ω1), the
wavenumbers corresponding to the beams of subharmonic frequency emanating
from the top of the ridge and from the side, are quite different. Accordingly, the
distribution χij(ωα) has different wavenumbers: see, for example, the profile Re{χij(ω1)}
at ξij =11 km and 30 km, shown in figure 18. On the other hand, the structure of the
phase field corresponding to the wave of tidal frequency, i.e. ϕij(ω0), does not suggest
any dominant wavenumbers.

To define the dominant vertical wavenumbers of the distribution χij(ωα), we apply a
zero-padded discrete Fourier transform in the vertical for each index i. Thus, for each
frequency, we obtain a distribution χ̂(x, m) that shows the dominant wavenumbers.
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The signs of the wavenumbers obtained with this method are not necessarily correct
and should be checked according to the direction in which the corresponding wave is
propagating. Figure 19(a, b) shows the two fragments of the distribution χ̂ (x, m) with
the two dominant vertical wavenumbers. One vertical wavenumber (mtop

1 ) corresponds
to the instability on the top and another, to the instability on the side (mside

1 ).
Figure 19(c, d ) shows the energetic wavenumbers for the frequency ω2.

Figure 20 shows the distribution of the energetic wavenumbers of the waves of tidal
frequency. The important difference in comparison with the case of subharmonics
is that there are no localized peaks signifying dominant wavenumbers. Rather, the
distribution of the energetic wavenumbers for the tidal frequency is decaying with
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the vertical wavenumber. The pattern of the distribution reflects the fact that the
upward propagating beam has more energy in high vertical wavenumbers in the
region 0 � x � 10 km, i.e. on top of the ridge. The downward propagating beam
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Top Side(
k

top
1 , m

top
1

)
=(−9.2765 × 10−4, −0.0277) m−1

(
kside

1 , mside
1

)
= (4.4205 × 10−4, −0.0132) m−1(

k
top
2 , m

top
2

)
=(2.4937 × 10−3, 0.039) m−1

(
kside

2 , mside
2

)
= (−2.174 × 10−3, −0.034) m−1

Table 2. Dominant wavenumbers of the resonant triads for the case 20◦ N.

has more energy in higher vertical wavenumbers in the region 10 � x � 20 km, i.e.
on the side of the ridge. The alternating black ‘ribbons’ in the distribution are the
manifestation of what the vertical mode structure turns into over topography.

Once the dominant vertical wavenumber is found, the corresponding horizontal
wavenumber can be constructed using the dispersion relation:

k = ± m

√
ω2 − f 2

N2
b − ω2

. (4.8)

Table 2 gives the resulting wavenumbers for the two subharmonics. Note that the
sign of the wavenumber mside

1 was corrected in accordance with the direction of the
wave propagation. The waves characterized by (ω1, k

top
1 , m

top
1 ) and (ω2, k

top
2 , m

top
2 ) form

a resonant triad with the wave (ωtop
0 , k

top
0 , m

top
0 ) = (ω1 +ω2, k

top
1 +k

top
2 , m

top
1 +m

top
2 ), where

ω
top
0 =

(
k

top
0

)2
N2

b +
(
m

top
0

)2
f 2(

k
top
0

)2
+

(
m

top
0

)2
= 1.4591 × 10−4 s−1. (4.9)

Thus, within 5 % error, the frequency ω
top
0 coincides with the tidal frequency ω0

and, consequently, we conclude that the waves of frequencies ω1 and ω2 on top of
the ridge form a resonant triad with the wave of tidal frequency. Similarly, it can
be shown that the subharmonic waves on the side of the ridge form a difference
resonant triad with the wave of tidal frequency, so that the corresponding frequency
ωside

0 ≈ 1.3426 × 10−4 s−1.
The dominant vertical wavenumbers of the subharmonics are very different along

the top and sides of the topography. This is the reflection of the fact that, on the
sides, the difference triad interaction takes place, whereas on the top, the dynamics is
governed by the sum triad interaction.

5. Discussion
The fact that in some locations the flow is highly nonlinear results in subharmonic

instability whose properties may be different from the properties of instabilities known
from weakly nonlinear theory. As was shown in this paper, in the fully nonlinear
regime, the instabilities may lead to generation of both progressive and forced waves.
As the subharmonic instabilities play a major role in energy transfers occurring in
a simplified system like ours and may potentially play a role in the ocean, some
conceptions from the linear and weakly nonlinear theory should be reconsidered.

Using the term parametric subharmonic instability for the description of the main
cause of the subharmonics can be confusing. Originally, when described within the
weakly nonlinear framework, PSI was thought of as an instability acting on a single
wave not perturbed by topography or coherent surrounding waves. This interpretation
is misleading as the development of an instability in a violently perturbed wave, such
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as one advected over topography, is much faster than in classical PSI. Also, PSI
works only if the generated subharmonics are within the free-internal-wave frequency
range (then PSI falls into the category of resonant-triad interactions). Identifying the
main cause of subharmonics with PSI (what seems to be the case in the work by
MacKinnon & Winters 2003, 2007), leads to a false conclusion that, once we go beyond
the critical latitude where both subharmonics are forced, then there is no instability.

Forced internal waves seem to be underestimated or overlooked in comparison with
progressive ones. The dispersion relation (1.1) from linear theory says that progressive
internal waves are characterized by frequencies in the range (f, Nb), thus overlooking
forced internal waves. The lack of attention to forced waves might be the consequence
of the conception that resonant triad interactions, which can only produce waves
within the range (f, Nb), are the dominant mechanism of energy transfers. However,
according to Phillips (1967), ‘there is no prior reason why forced components, whose
wavenumbers and frequencies do not obey the wave-dispersion relation, should not be
generated with amplitudes comparable with those of the primary waves.’ In our runs,
we have actually shown that non-resonant triad interactions can produce internal
waves of comparable energies in the ranges [0, f ) and (Nb, +∞) (see, for example,
figure 6). This feature of the energy transfers requires special attention, as the impact
of forced waves on mixing can be even greater than that of progressive waves (Teoh
et al. 1997). Trapped waves can accumulate energy more quickly and hence are more
susceptible to overturning.

The last result we will discuss in this section is that the interharmonics in the
spectrum are not a consequence of Doppler-shifted subharmonic frequencies, as was
assumed, for example, in the work by Gerkema et al. (2006). Gerkema et al. (2006)
investigated internal-tide generation at a continental shelf-break. They solved the
non-hydrostatic equations for a time period of about 15 tidal periods, which is
approximately a quarter of the time period that we use in our simulations. The
spatial resolution in Gerkema et al. is close to ours: in the deep part of the domain
(waterdepth 4 km), they use cells 100 m in the horizontal by 25 m in the vertical,
whereas we use cells 100 m by 26.042 m. They also used strong damping in the form of
a sponge layer to absorb baroclinic waves away from the source. Their kinetic energy
spectra estimations are similar to ours, but have larger amount of leakage (mainly
due to the short total model time); consequently, their estimations do not capture
most of the interharmonics except for the strongest ones. For example, in the case
of θ = 27.5◦ N, their spectra have the interharmonic of the frequency ω = 0.5ω0 and
ω ≈ 1.5ω0. They suspected that the interharmonic frequency 1.5ω0 was the result of the
Doppler shift due to advection of the subharmonic waves by the tidal frequency waves.
Our results suggest that the interharmonic frequencies observed in the spectrum are
not a consequence of Doppler shifting. This follows from the comparison of spectra
in the Eulerian, Lagrangian and barotropic-Lagrangian reference frames. Moreover,
and here we return once again to the forced vs. progressive waves concept, the waves
of subharmonic frequencies in the subinertial range are trapped waves localized in
patches near the generation sites, whereas their counterparts, interharmonics separated
from them by multiples of tidal frequency, are progressive internal waves manifested
in internal wave beams.

6. Summary
Within our simplified model of tide–topography interaction, the energy cascade

consists of the following main processes: (i) the barotropic tide losing energy to waves
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of harmonic frequencies through the nonlinear mechanism described by Bell (1975)
and Khatiwala (2003); (ii) PSI occurring in the tidal beam, which happens for all
latitudes; (iii) the interaction of harmonics and subharmonics producing forced and
progressive interharmonic waves at the combination frequencies. Once the spectral
components are generated, energy starts ‘trickling down’ from the energetic waves
toward weak ones.

Both harmonics {nω0} and interharmonics {ωα + nω0}, where n ∈ � and ωα ∈
(0, ω0], decay with n at a similar nearly exponential rate. As a result, the spectrum has a
self-similar structure, which decays in magnitude at an exponential rate. This suggests
a simple interpretation of the cascade that any spectral component ωβ ∈ (0, +∞)
present in the spectrum loses (by interacting with the wave of tidal frequency) the
same fraction μ = const of its energy toward the spectral component ωβ + ω0.

Investigation of the vertical scales of the internal wave fields revealed that among
all the spectral components in the flow, subharmonics have the finest vertical scales
and, thus, are the first candidates for direct mixing. Further investigation of vertical
and horizontal wavenumber spectra showed that waves of subharmonic frequencies
within the free internal wave range are generated through the PSI.

The instabilities are stronger for the near-critical latitudes; there, we observe
strong waves of interharmonic frequencies. However, there is no sudden cutoff
when the latitude becomes supercritical. For the latitude θ = 30◦ N, which is slightly
supercritical, some waves of subharmonic frequency are trapped. This suggests that
the observed instabilities are of a forced non-resonant type. Instabilities of the forced
non-resonant type also generate subharmonic frequencies in the case θ = 40◦ N.

Previously, attention has focused on harmonics and strong subharmonics only.
Interharmonics, ignited by instabilities in the highly nonlinear regions, and multiplied
through triad interactions, represent the next logical step in understanding the process
of energy cascade in internal waves.
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